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Several equivalent forms of incompressible Navier-Stokes equations in three dimensions are 
presented. The required number of Fourier transforms and input/output passes are discussed 
for a spectral simulation of periodic flow. 

I. INTRODUCTION 

The study of homogeneous turbulence via spectral numerical simulations of 
periodic flows is very popular among specialists. Huge resolutions, up to 1283 or 
2563 with symmetries, are currently utilized. This paper provides some improvements 
to the algorithms used at present. In Section II we list four equivalent forms of the 
Navier-Stokes equations; the fourth one, which is new, leads to more efficient 
numerical algorithms as discussed in Sections III and IV. In these sections we 
compare the number of Fourier transforms and transfers between central and 
peripheral memories for various spectral algorithms. The comparison is made on 
these numbers rather than on the total operation count or on the effective computing 
time because first, for large resolutions it is clear that most of the computing time is 
spent in fast Fourier transforms and/or in input/output passes; and second, total 
operation count and effective computing time are largely dependent on the 
programmer’s skill as well as on the particular computer used. 

II. DIFFERENT FORMS OF NAVIER-STOKES EQUATIONS 

The velocity being defined by its components (u, Y, w), P being the pressure and v 
the kinematic viscosity, the three classical formulations of incompressible 
Navier-Stokes equations in dimension three are 

&l 
li+ug+u~+w,=-~+vdu, 

ay 
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a a 8P 
ti+--u’+aIIv+-trw=--+fYdU’ 

ax ay az 

zi-v (g$)+w (g-g)= -!F+v& (3) 

zz=P+ f(u” + v2 + Iv’). 

For each we have given only the evolution equation of the first component of the 
velocity, the incompressibility condition (au/ax) + (&lay) + (aw/az) = 0 being 
implicit. Formulation (2) is associated with conservation of momentum whereas 
energy conservation expresses itself simply in form (3). 

The following new formulation, yet unpublished, will present advantages over the 
preceding ones in the derivation of algorithms for spectral simulation methods: 

1 a 1 a a a ~+--(u2-v~)+--(~2-w2)+-uv+-uw= 
3 ax 3 ax ay az 

-g + VA& (4) 

n =P + $2 + v2 + w’). 

A similar form is available for incompressible Navier-Stokes equations in 
dimension two. 

III. NUMBER OF FOURIER TRANSFORMS PER TIME STEP 

We analyse the evaluation of time derivatives of the velocity Fourier components 
by means of a collocation method. Examine, for instance, the collocation method 
associated with formulation (2). 

In spectral form, dissipation terms are obtained by simple algebraical operations; 
likewise, because of incompressibility, the divergence of equation of motion gives, in 
spectral form, an algebraical relation between the pressure (P or n) and nonlinear 
terms; pressure terms are then simply eliminated. The only difficulty is then to 
calculate nonlinear terms, going from Fourier space to physical space, by means of 
fast Fourier transforms (FFT), to evaluate pointwise products. 

Knowing (C(k), t?(k), 9(k)) the Fourier components of the velocity, in order to 
evaluate the Fourier components of nonlinear terms of Eqs. (2), we execute 
successively 



HOMOGENEOUSTHREE-DIMENSIONALTURBULENCE 211 

where p denotes a function described by its Fourier components, and f the same 
function described by its values on a regular grid, and k = (k, , k,, k,). 

Thus formulation (2) requires 9FFT per time step. Similarly one would show that 
formulation (1) requires 14 FFT per time step (11 inverse, 3 direct), and formulation 
(3) 9FFT per time step (6 inverse, 3 direct). 

Formulation (4) has the advantage of requiring only 8FFT per time step (3 inverse, 
5 direct): 

the “sixth” term wm being obtained trivially from the others.’ 
When using a Fourier-Galerkin method, two possibilities are available for 

removing aliasing errors: one developed by Patterson and Orszag [ 1 ] requires twice 
the given numbers of FFTs, the other one the same numbers of FFTs as collocation 
methods but the transforms must be performed on arrays one and a half times larger 
in each space direction. 

IV. NUMBER OF INPUT/OUTPUT PASSES PER TIME STEP 

We consider large resolutions so that a single scalar array is larger than the 
available memory of the computer. Data fields are then resident on peripheral 
memory (disks) and processed by input and output of (small) parts of them. Two 
techniques are available for this processing: a full three-dimensional array can be 
divided in cubes or in planes. 

For present array processors or super computers able to compute FFTs very 
rapidly, the input/output time becomes predominant and is only partially covered by 
computing time. It is then of great importance to reduce to the minimum the number 
of inputs and outputs. We shall examine in that respect these two techniques 
associated with the algorithms described previously. 

The Cube Technique 

Any three&dimensional array is kept on disks as a collection of elementary cubes; a 
fast Fourier transform on such an array is obtained by computing successively the 
transform in each of the three directions of space, inputting and outputting piles of 
elementary cubes ranked along the direction of computation (Pouquet, [2]). One FFT 
on a full scalar array then requires 6 input/output (I/O) passes of the equivalent of a 
full scalar array: 

’ In two dimensions the number of FFTs per time step is five for currently used methods and four for 
the similar new formulation we derived. 

581/50/2-3 
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Start with u written on disk, 
input packs of x lines, 

FFT along x direction : FFT these lines, 
output the results, 

same along y from preceding results, 
same along z from preceding results, 
the result u^ is on disk. 

For the centered second order time scheme (leapfrog), we need to compute the time 
derivative of the velocity field at time t, then input the velocity at time t - dt to 
compute the velocity at time t + dt and finally write the result on disk : 

ii(t) -+ I ii(t) -+ ;(t + dt) = ii(t - dt) + 2dt C(t), 

ii(t - dt). 

Suppose the chosen spectral formulation requires to evaluate the time derivatives q 
inverse Fourier transforms followed by (p-q) direct transforms, so that the total 
number of FFT’s per time step is p. To avoid useless I/O passes we can chain the 
calculations of inverse and direct transforms by suitable organization of the 
calculation sequence: the last output pass and first input pass between batches can be 
eliminated. Likewise the final result of direct transforms need not be outputed if these 
transforms are chained with the time integration. For one time step we then need the 
following number of I/O passes: 

3 + q(6 - 2) for the q inverse transforms, starting 
with the three components of i and ending without 
outputting the q final results, 

(p - q)(6 - 2) for the (p - q) direct transforms, the initial 
data being already in the computer and the 
results being kept there, 

3 for the input of ti(t - dt), 
3 for the output of ii(t + dt), 

total: 4p + 9 I/O passes of a full scalar array per time step. 

So usual collocation methods (formulation (2) or (3)) require, in this technique, 
45 I/O passes per time step. Formulation (4) we propose needs only 41 I/Opasses 
per time step. 

We can still reduce this number of I/O passes by using incompressibility which 
allows us to store on disks only two components of the velocity (e.g., u^ and v^). 
Keeping in central memory (or on disk) only the “zonal” components of w  (k, = 0), 
i.e., a two-dimensional array, one can reconstruct, from u^ and 6, the entire vertical 
velocity. This technique saves three more I/O passes, which leads to 38 I/O passes 
per time step. Finally, we can chain the termination of a time step with the beginning 
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of the next one, saving the input of the last computed velocity field, and we end up 
then with 36 I/O passes per time step. 

The Plane-by-Plane Technique 

The plane-by-plane technique, which we are now going to define, can be used only 
if the central memory is sufficiently large. In this technique a three-dimensional array 
is inputted by packs of one or several planes parallel to the x and y directions for 
processing in these directions, and by packs of lines parallel to the z direction for 
processing in the vertical direction. 

One FFT on a full scalar array then requires four I/O passes of the equivalent of a 
full scalar array: 

Start with u written on disk. 
input planes parallel to x and y, 

FFT along x and y: FFT these planes, 
output the results. 

input z lines of the preceding results, 
FFT along z: FFT these lines, 

output the results. 

the result z’i is on disk. 

Now for the leapfrog scheme, assuming p FFT’s for the computation of the time 
derivatives, we need, following the same calculations as for the cube technique: 

3 + q(4 - 2) + (p - q)(4 - 2) + 3 + 3 = 2p + 9 

I/O passes per time step. 
So usual collocation methods (formulation (2) or (3)) require in the plane-by-plane 

technique 27 I/Opasses per time step. Formulation (4) requires 25 I/Opasses per 
time step, with the incompressibility trick previously described: 22 I/Opasses per 
time step and with chaining of two time steps: 20 I/Opasses per time step. 

V. CONCLUSION 

As soon as the number of degrees of freedom of a numerical simulation of 
turbulence is large, input/output passes between peripheral and central memory 
become very costly. We pointed that this cost is very different from one scheme to 
the other, varying between 45 and 20 I/O passes per time step. 

ACKNOWLEDGMENTS 

We thank Dr. Philippe Roy for useful comments and an unknown reviewer for pertinent recommen- 
dations. 



214 C.BASDEVANT 

REFERENCES 

1. G. S. PATTERSON AND S. A. ORSZAG, Phys. Fluids 14 (1971), 2538. 
2. A. POUQUET. Note sur la manipulation des donnkes en simulation numbrique directe de la turbulence, 

Observatoire de Nice, France, 1976. 


